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We develop and test the last-passage diffusion algorithm, a charge-based Monte Carlo algorithm, for the
mutual capacitance of a system of conductors. The first-passage algorithm is highly efficient because it is
charge based and incorporates importance sampling; it averages over the properties of Brownian paths that
initiate outside the conductor and terminate on its surface. However, this algorithm does not seem to generalize
to mutual capacitance problems. The last-passage algorithm, in a sense, is the time reversal of the first-passage
algorithm; it involves averages over particles that initiate on an absorbing surface, leave that surface, and
diffuse away to infinity. To validate this algorithm, we calculate the mutual capacitance matrix of the circular-
disk parallel-plate capacitor and compare with the known numerical results. Good agreement is obtained.
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Monte Carlo diffusion algorithms are a powerful, versatile
method of solving elliptic, partial differential equations. With
the aid of probabilistic potential theory �1�, many practical
problems can be framed in terms of generalized diffusion
equations, whose solutions are expressed as averages over
the trajectories of diffusing particles. Because each particle
executes Brownian motion independently of the others, such
problems are naturally adapted to parallel computation. Be-
cause diffusing particles interact only locally with their en-
vironment, problems involving irregular and convoluted
boundaries are readily treated �2�.

In particular, diffusion Monte Carlo algorithms �3–5� map
electrostatic problems onto diffusion problems: charges be-
come point sources of diffusing particles, and conductors
become perfect absorbers of these particles.

Two major growth areas, biotechnology �3,6� and micro-
fabrication �7,8�, are domains making heavy use of these
methods. Here we focus on the latter. The ever-decreasing
length scales involved in semiconductor device fabrication
have made the three-dimensional �3D� interconnect geom-
etry more complex and interconnect capacitance important
because the parasitic capacitance is a dominant factor in
high-speed chip design �7�. A Monte Carlo method, the float-
ing random-walk method, has been used for extracting the
capacitance of complex 3D interconnects for integrated cir-
cuits �8�. This method is a detailed application of the
Feynman-Kac theorem; it allows calculation of the potential
�and the surface charge density� at a point as a weighted
average over the boundary values.

First-passage Monte Carlo diffusion algorithms are
known to be quite efficient and accurate for calculating the
simple capacitance of a conductor �2,3�. The conductor be-
comes an absorbing object of identical size and shape. The
capacitance is related to the fraction of diffusing particles
that start at random positions on a sphere surrounding this
absorbing object, and are absorbed at its surface. These
methods are efficient, because they are charge based, i.e.,
they focus on computing the surface charge distribution. On
the one hand, the entire potential distribution can be obtained
from the surface charge distribution, e.g., by the fast multi-
pole method �9�. On the other hand, first-passage methods
automatically incorporate importance sampling; thus, they

are computationally fast. But first-passage methods seem not
to generalize to the problem of mutual capacitance.

In this paper, we introduce a last-passage diffusion algo-
rithm �9,10�, a Monte Carlo method, which does allow cal-
culation of mutual capacitance. In this method, we average
over diffusion paths that start very near to one of the absorb-
ing objects and diffuse until they are either absorbed by a
different absorbing object, or diffuse away to infinity.

The mutual capacitance matrix Cji of a set of N conduc-
tors is defined by the relation

Qj = �
i=1

N

CjiVi. �1�

Here, Vj and Qj are, respectively, the voltage and charge on
the jth conductor. Cji is the total charge on conductor j, when
one applies unit voltage to conductor i while grounding all
the other conductors. It is the integral, over the surface of
conductor, j, of surface charge � ji. The voltage field V�x�
thus imposed is identical to the function P�x→Ci�, which is
the probability that a diffusing particle started at the point x
will be absorbed on the surface Ci of the ith conductor. By
Gauss’s law, the surface charge density �ii�x� is given by

��ii�x� =
d

d�
�

�=0
P��x + �� → Ci� = lim

�→0

P��x + �� → Ci� − 1

�
.

�2�

Except for a minus sign, the numerator of this expression is
the probability that a diffusing particle starting at �x+�� will
not be absorbed on the ith surface. The �→0 limit is evalu-
ated as follows: The probability P��x+��→Ci� can be writ-
ten as a convolution of two factors: the probability g�x
+� ,y� that a diffusing particle leaves point �x+�� and makes
first passage at a point y on a sphere of radius a surrounding
point x; and the probability �1− P�y→Ci�� that a particle
started at the point y is absorbed by a conductor other than
the ith, or wanders off to infinity. The first factor is propor-
tional to �, but is simple. The second factor can be obtained
via Monte Carlo simulation. Thus Cii is given by
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Cii = �
x�Ci

dS �ii�x� , �3�

�ii�x� =
1

4�
� d2y G�x,y��1 − P�y → Ci�� . �4�

Here, G�x ,y� is the Laplacian Green’s function for a point
dipole centered at point x and normal to the surface,

�G�x,y� =
d

d�
�

�=0
g�x + �,y� �5�

where g�x+� ,y� is the Laplacian Green’s function associated
with Dirichlet boundary conditions on the region ��y. For a
flat conducting surface, this dipole Green’s function is given
by �11�

G�x,y� =
3

2�

cos �

a3 , �6�

where � is the angle between the vectors x and y.
The same ideas give for Cij, j� i,

Cij = �
x�Ci

dS �ij�x� , �7�

�ij�x� = −
1

4�
� d2y G�x,y�P�y → Cj� . �8�

The last-passage method is tested by calculating the mutual
capacitance of the circular-disk parallel-plate capacitor �12�.
The integrals over surface charge in Eqs. �3� and �7� are
calculated using the fractional sampling method �13�, with
the reference for importance sampling of the charge distribu-
tion being the single charged circular plate. The fractional
sampling method has been used extensively in neutron trans-
port and similar problems.

The integrals over surface charge in Eqs. �3� and �7� are
calculated using adaptive numerical integration �14� with the
function evaluations of �ii ,�ij being defined by Eqs. �4� and
�8�. Each function evaluation is performed by choosing 100
points at random on the y sphere surrounding point x,
launching one diffusing particle from each point, and evalu-
ating the function P as either zero or unity depending on the
outcome �see Fig. 1�.

For each relative separation, 108 diffusing particles were
used. The absorption layer thickness for “walks on spheres”
�5,15� was 10−6. In the region outside the plates we use
“walks on planes” �16–18�, a natural generalization.

The rather simple problem of a parallel-disk capacitor was
studied here because a quasianalytic solution for this prob-
lem is available �12�; this gives us a reliable standard by
which to evaluate our method. Carlson and Illman performed
a numerical integration of Love’s equation, an integral equa-
tion of Fredholm type obeyed by the charge density in this
problem. Specifically, they solved for the quantity �C11

−C12�, which is given by

�C11 − C12� = 4�0a�
0

1

f�r�dr �9�

where the charge density f�r� obeys the equation

TABLE I. Dimensionless capacitance coefficients �� /a�C for the parallel-circular-plate capacitor. Ana-
lytic results are compared to Monte Carlo results for both independent mutual capacitance quantities in this
problem, �C11−C12� and �C11+C12�, as functions of �=d /a, the dimensionless plate separation. Here a is the
radius of the circular plates and d their separation. Analytic results for the quantity �C11−C12� were taken
from Ref. �12�; analytic results for �C11+C12� were calculated by the authors by solving a modification of the
integral equation solved in that work.

�C11−C12� �C11+C12�
� Analytic Monte Carlo Analytic Monte Carlo

0.001 787.0 788.0 0.50070 0.5002

0.01 80.43 80.41 0.50537 0.50484

0.1 9.2331 9.2320 0.53588 0.53559

1 1.8208 1.8203 0.69120 0.69104

10 1.0675 1.0643 0.94051 0.94094

FIG. 1. �Color online� Side view of particles diffusing in the
geometry of a parallel-plate capacitor. Examples are shown of three
classes of diffusing particle paths: �I� those that eventually diffuse
back to the lower surface and are absorbed; �II� those that are ab-
sorbed on the upper surface; �III� those that diffuse away to infinity.
The capacitance matrix element C11 involves classes II and III;
element C12 involves class II. The function G�x ,y� is a propagator
that moves diffusing particles from a point x on the lower absorbing
surface to a point y on a surrounding sphere. �See Eqs. �3� and �7��.
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f�r� = 1 + �
0

1

K�r,s, � �f�s�ds �10�

with

K�r,s, � � =
�

�
	 1

�2 + �r + s�2 +
1

�2 + �r − s�2
 �11�

and �=d /a, the dimensionless plate separation. It can be
easily seen that the quantity �C11+C12� is given by the same
equation, but with the plus sign on the right-hand side of Eq.
�10� replaced by a minus sign. We solved for this quantity
following the approach of Carlson and Illman. Both sets of
analytic results agree well with our Monte Carlo results �see
Table I�.

The last-passage algorithms can be made more efficient

by incorporating importance sampling into the Monte Carlo
process �19�. This is presently under study.
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